Thoracoscopic surgery under epidural anesthesia for secondary spontaneous pneumothorax

Publication History
Received: Feb, 9 2024 Revised: Feb 16, 2024
Accepted: Feb 27, 2024 Published: Mar 30, 2024

Authors and Affiliation:
Salman Ahmed¹, Muhammad Hassan Raza²,
Shafia Safdar³, Muhammad Umair Ashraf⁴,
Khalil Ahmed⁵, Sardar Saud Abbas⁶
¹Memon Medical Institute Hospital
²Sheikh Zayed Hospital Lahore, Pakistan
³MMC General Hospital, Peshawar, Pakistan
⁴Ali Medical Centre, Islamabad, Pakistan
⁵LUMHS Jamshoro, Pakistan
⁶Rehman Medical Institute, Peshawar, Pakistan.
*Corresponding Author Email: drkhalilshaikhthoracsurgeon@gmail.com

Copyright & Licensing:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.

Conflict of Interest:
Author(s) declared no conflict of interest.

Acknowledgment:
No Funding received.

Please scan me to access online.
Thoracoscopic surgery under epidural anesthesia for secondary spontaneous pneumothorax

Salman Ahmed¹, Muhammad Hassan Raza², Shafia Safdar³, Muhammad Umair Ashraf⁴, Khalil Ahmed⁵, Sardar Saud Abbas⁶

¹Memon Medical Institute Hospital
²Sheikh Zayed Hospital Lahore, Pakistan
³MMC General Hospital, Peshawar, Pakistan
⁴Ali Medical Centre, Islamabad, Pakistan
⁵LUMHS Jamshoro, Pakistan
⁶Rehman Medical Institute, Peshawar, Pakistan.

*Corresponding Author Email: drkhalilshaikhthoracicsurgeon@gmail.com

ABSTRACT

Objective: The aim of the study was to compare the outcomes of Thoracoscopic surgery for spontaneous pneumothorax when performed under epidural local anesthesia (ELA) versus under general anesthesia.

Methods: Prospective study was conducted at LUMHS Jamshoro, Pakistan over a 2-year period from 2019 to 2021, involving 180 patients who were randomly assigned using a computer-generated random number table. Patients aged 21–65 with ASA I and II classifications, diagnosed with pleural pathologies and scheduled for VATS procedures, were included in the study, with a restriction to a two-hour time limit.

Results: According to pulmonary lung functions, the mean FEV1/FVC, DLCO and preoperative dyspnea score based on ATS was less in EA patients than GA patients, (p<0.001). Whereas, underlying lung disease, COPD and ILD of GA and EA patients were almost equal, (p>0.050). The mean operative time in GA and EA patients was 110.12±13.92 minutes and 104.58±7.86 minutes, respectively, (p=0.023).

Conclusion: ELA exhibits advantages in terms of shorter global operating room time and a reduced incidence of related complications, highlighting its potential as a preferred approach for this procedure.

Keywords: Thoracoscopic surgery, Epidural anesthesia, Secondary spontaneous pneumothorax, General anesthesia, video assisted surgery
1. INTRODUCTION

Pneumothorax, initially described by Itard in 1803 and further elucidated by Laennec in 1819, is characterized by an accumulation of excess air in the pleural cavity. Surgical intervention remains paramount in its treatment, with the contemporary preference shifting towards video-assisted thoracoscopic surgery (VATS) over traditional open thoracotomies, marking advancements in surgical practice.

In practice, the double-lumen endotracheal tube is preferred during operations under general anesthesia (GA) for achieving single lung ventilation, deflating the operative lung to facilitate surgery while ventilating the contralateral side to maintain oxygenation levels for patients. However, mechanical ventilation and muscle relaxants used during GA can lead to various adverse effects, such as ventilator-induced lung injury, postoperative intractable cough, trauma to teeth, airway injuries, postoperative nausea and vomiting, increased risk of pneumonia, impaired cardiac performance, and neuromuscular problems.

The utilization of epidural and/or local anesthesia (ELA) has proven highly effective in addressing various challenges in thoracic surgeries. Conducted a groundbreaking study in 1997 and highlighted the efficacy of local anesthesia with sedation in wedge resection under VATS for spontaneous pneumothorax. Since then, ELA has become increasingly prevalent in managing a range of thoracic conditions, including pulmonary nodules, lung cancer, pleurodesis for malignant pleural effusion, lung volume reduction surgery, tracheal reconstruction, and biopsy for anterior mediastinal masses.

This study suggests that thoracoscopic surgery under epidural anesthesia could be a safer option for patients with secondary spontaneous pneumothorax compared to general anesthesia.Clinicians may consider this approach particularly for patients who are not ideal candidates for general anesthesia due to comorbidities or other risks.

2. METHODOLOGY

Prospective randomized clinical study was conducted at Lady Reading Hospitals over a 2-year period from 2019 to 2021, involving 180 patients who were randomly assigned using a computer-generated random number table. Patients aged 21–65 with ASA I and II classifications, diagnosed with pleural pathologies and scheduled for VATS procedures, were included in the study, with a restriction to a two-hour time limit.

Patients with anticipated challenges in managing their airways, those experiencing hemodynamic instability, and individuals with persistent cough, elevated airway secretions, severe emphysema, or clinical signs of active infectious disease may require special considerations during medical procedures. Additionally, patients with hypoxemia (PaO2 < 60 mmHg) or hypercarbia (PaCO2 > 50 mmHg), coagulopathy (INR ≥ 1.5), obesity (BMI > 30 Kg/m2), infection at the injection site, or allergies to local anesthetics should be approached with caution. Those with neurological disorders such as seizures, intracranial masses, or brain edema also warrant careful attention in medical interventions.

Patients in the anesthesia clinic underwent surgery only after giving informed written consent, and they were familiarized with the Visual Analogue Scale (VAS), a 10 cm straight line representing the spectrum from "no pain" to "worst pain." Anesthesia administration strictly adhered to the hospital protocol governing preoperative investigations, fasting hours, intraoperative monitoring, and drug use, with perioperative
Thoracoscopic surgery under epidural anesthesia for secondary spontaneous pneumothorax

The study comprised two equal groups, each with 100 patients: the TEA Group, where awake patients received Thoracic Epidural Anesthesia, and the GA Group, where patients underwent General Anesthesia with one-lung ventilation. In the TEA group, patients were pre-medicated with 3–4 mg intravenous Midazolam and 50 mcg intravenous Fentanyl, followed by the insertion of an epidural catheter between T3 and T4 or T4 and T5 intervertebral spaces. A test dose of 5 ml of 2% Lidocaine was injected, followed by 7–10 ml of Bupivacaine 0.5% and 50 mcg of Fentanyl to achieve sensory and motor block between C7 and T7 levels, ensuring diaphragmatic respiration. Patients experiencing persistent hemodynamic instability or hypoxemia were converted to general anesthesia and excluded from the study. Hypoxemia was defined as peripheral oxygen saturation (SpO2) < 92% on room air, necessitating oxygen supplementation (O2 mask 5–7 l/min). Postoperatively, technical and logistic limitations led to the removal of the epidural catheter.

Patients undergoing general anesthesia were premedicated with Midazolam 3–4mg IV and Ondansetron 4mg IV. Anesthesia induction included Propofol (2 mg/kg) and Fentanyl (1 mcg/kg), followed by Cisatracurium 0.1 mg/kg IV for double-lumen endotracheal tube insertion, confirmed by fiberoptic bronchoscopy. Lung isolation techniques were employed to access the operative hemithorax, emphasizing lung protective ventilatory strategies such as low tidal volumes, moderate positive end-expiratory pressure (PEEP), and recruitment maneuvers.

Postoperatively, both groups received regular Paracetamol 1gm IV every 6 h for 48 h, with Pethidine 50mg IV as rescue analgesia if the Visual Analog Scale (VAS) score was ≥3.

Uniportal VATS procedures involve making an incision in the 8th intercostal space at the posterior axillary line without the need for gas insufflation; a wound protector is applied to induce open pneumothorax, facilitating deflation of the operated lung, and continuous communication with the surgical team ensures satisfaction and technical feasibility for accessing the operated hemithorax in the TEA group; intraoperatively, a shared decision was made in three patients to convert to GA due to either hemodynamic instability or technical difficulties for the surgeon in completing the procedure.

The data were analyzed using the Statistical Package for Social Science (SPSS) version 22.0, with quantitative results presented as mean ± standard deviation (SD) and qualitative data expressed in terms of frequency and percentage.

3. RESULTS

Overall, 200 patients were included in this study, in which 165 (82.5%) patients underwent general anesthesia (GA) and 35 (17.5%) patients underwent epidural anesthesia. The mean age of GA and EA patients was 62.85±9.28 years and 63.72±7.62 years, (p=0.833). The mean preoperative chest tube drainage of GA and EA patients was 12.19±4.28 days and 12.51±4.32 days, (p=0.689). According to pulmonary lung functions, the mean FEV1/FVC, DLCO and preoperative dyspnea score based on ATS was less in EA patients than GA patients, (p<0.001). Whereas, underlying lung disease, COPD and ILD of GA and EA patients were almost equal, (p>0.050). (Table. I).

The mean operative time in GA and EA patients was 110.12±13.92 minutes and 104.58±7.86 minutes, respectively, (p=0.023). Whereas, pre and postoperative
Thoracoscopic surgery under epidural anesthesia for secondary spontaneous pneumothorax

Table. I
Demographics and preoperative characteristics of the study groups

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>GA</th>
<th>EA</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>62.85±9.28</td>
<td>63.72±7.62</td>
<td>0.833</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>108 (65.5)</td>
<td>22 (62.9)</td>
<td>0.770</td>
</tr>
<tr>
<td>Female</td>
<td>57 (34.5)</td>
<td>13 (37.1)</td>
<td></td>
</tr>
<tr>
<td>Preoperative chest tube drainage (days)</td>
<td>12.19±4.28</td>
<td>12.51±4.32</td>
<td>0.689</td>
</tr>
</tbody>
</table>

Pulmonary lung function

<table>
<thead>
<tr>
<th></th>
<th>GA</th>
<th>EA</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEV1/FVC</td>
<td>64.91±6.91</td>
<td>21.55±2.88</td>
<td><0.001</td>
</tr>
<tr>
<td>DLCO</td>
<td>68.21±7.62</td>
<td>24.87±2.28</td>
<td><0.001</td>
</tr>
<tr>
<td>Preoperative dyspnea score based on ATS</td>
<td>1.78±0.42</td>
<td>3.04±0.22</td>
<td><0.001</td>
</tr>
<tr>
<td>Underlying lung disease</td>
<td>5 (3.0)</td>
<td>2 (5.7)</td>
<td>0.433</td>
</tr>
<tr>
<td>COPD</td>
<td>142 (86.1)</td>
<td>34 (97.1)</td>
<td>0.067</td>
</tr>
<tr>
<td>ILD</td>
<td>30 (18.2)</td>
<td>14 (40.0)</td>
<td>0.065</td>
</tr>
</tbody>
</table>

N (%), Mean±SD, GA = general anesthesia, EA = epidural anesthesia

Table. II
Outcome distribution of the study groups

<table>
<thead>
<tr>
<th>Outcome</th>
<th>GA</th>
<th>EA</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operative time (min)</td>
<td>110.12±13.92</td>
<td>104.58±7.86</td>
<td>0.023</td>
</tr>
<tr>
<td>Chest tube drainage (days)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative</td>
<td>12.53±2.42</td>
<td>11.15±1.42</td>
<td>0.061</td>
</tr>
<tr>
<td>Postoperative</td>
<td>6.31±1.39</td>
<td>6.63±1.35</td>
<td>0.215</td>
</tr>
<tr>
<td>Hospital stay (days)</td>
<td>9.78±1.01</td>
<td>9.98±0.82</td>
<td>0.303</td>
</tr>
<tr>
<td>Pain score</td>
<td>3.35±1.48</td>
<td>3.51±1.29</td>
<td>0.560</td>
</tr>
<tr>
<td>Prolonged air leak</td>
<td>14 (8.5)</td>
<td>3 (8.6)</td>
<td>0.987</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>14 (8.5)</td>
<td>0 (0.0)</td>
<td>0.074</td>
</tr>
<tr>
<td>ARDS</td>
<td>10 (6.1)</td>
<td>1 (2.9)</td>
<td>0.450</td>
</tr>
<tr>
<td>Empyema</td>
<td>9 (5.5)</td>
<td>1 (2.9)</td>
<td>0.522</td>
</tr>
<tr>
<td>Hospital death</td>
<td>7 (4.2)</td>
<td>2 (5.7)</td>
<td>0.703</td>
</tr>
<tr>
<td>Recurrence</td>
<td>28 (17.0)</td>
<td>7 (20.0)</td>
<td>0.668</td>
</tr>
</tbody>
</table>

4. DISCUSSION

Recent studies have recommended considering awake surgery for patients with concomitant lung diseases and high risks of postoperative complications from general anesthesia (GA), particularly in cases of surgical intervention for solitary pulmonary nodules (SSP)\(^\text{11}\). Awake surgery under epidural anesthesia (EA) has been suggested as an alternative approach, with some articles reporting reduced recurrence rates and better outcomes in high-risk patients\(^\text{12}\). This approach may also be applicable in cases involving various thoracic diseases, offering a potential solution for challenging surgical scenarios.

A systematic review and meta-analysis were conducted by Chen et al\(^\text{13}\) to assess the feasibility and safety of thoracoscopic surgery under epidural and/or local anesthesia for spontaneous pneumothorax and reported positive results in favor of epidural anesthesia. While Nezu et al\(^\text{7}\) suggested that epidural and/or local anesthesia (ELA) resulted in shorter operative times and postoperative hospital stays compared to general anesthesia (GA), Pompeo et al. did not confirm these findings. Similarly, while Nezu et al\(^\text{7}\) reported shorter postoperative hospital stays with ELA, Noda et al\(^\text{14}\) held the opposing view.

In this study mean operative time in GA and EA patients was 110.12±13.92 minutes and 104.58±7.86 minutes, respectively. Wu et al\(^\text{15}\) and Pompeo et al\(^\text{16}\) observed that the ELA (awake endotracheal intubation) group exhibited a shorter anesthesia induction time due to the omission of tracheal intubation and subsequent bronchoscopic examination, while the absence of muscle relaxants in this group facilitated quicker postoperative recovery and reduced surgical time.
In this study in hospital mortality was observed 4.2% in general anesthesia group and 5.7% in epidural group. Hospital stay was 9.98±0.82 days in EA group and 9.78±1.01 days in GA group. Ahn et al\(^1\) documented two hospital deaths within the ELA group, one attributed to destructive lung pathology caused by multiple huge bullae, leading to mediastinal shift, and the other linked to an underlying case of unusual interstitial pneumonia. According to Gonzalez-Rivas et al\(^1\) patients in the ELA group, as opposed to those receiving general anesthesia (GA), did not experience any additional security measures and were able to leave the hospital without incident within several days.

According to studies conducted by Dong et al\(^1\) and Liu et al\(^1\), contraindications for thoracoscopic surgery under general anesthesia include American Society of Anesthesiologists (ASA) scores greater than 3, bleeding disorders, sleep apnea, obesity (body mass index > 30 kg/m²), extensive pleural adhesions, presence of epidural puncture contraindication, expected difficult airway management (such as airway hyper-reactivity), and tumors larger than 6 cm.

5. CONCLUSION

The study reveals that thoracoscopic surgery for spontaneous pneumothorax under epidural anesthesia (ELA) demonstrates feasibility and safety, as evidenced by similar operative time, hospital stay, complications, air leak, recurrence, and perioperative mortality compared to general anesthesia (GA). Notably, ELA exhibits advantages in terms of shorter global operating room time and a reduced incidence of related complications, highlighting its potential as a preferred approach for this procedure.

REFERENCES

